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Abstract. The effect of the time-dependent interface, separating an inertial quasi-geostrophic upper fluid
layer from the quiescent abyss, on the non-linear stability of a steady circulation that takes place in this
layer is explored. The analysis resorts to the method of Arnol’d’s invariant resulting in a conditional
stability criterion, which proves the stabilizing effect of the interface with respect to the single-layer case.
The uniqueness of the stable basic flow field follows. Finally, non-linear and linear analyses are compared
in the special case of a channeled flow with a fluctuating interface, the latter leading to an unconditional
stability statement, whose meaning is clarified by resorting to the previously obtained nonlinear criterion.

PACS. 92.10.Fj Dynamics of the upper ocean – 47.20.Ky Nonlinearity (including bifurcation theory)

1 Introduction

1.1 The physical system

In the framework of the quasi-geostrophic dynamics, the
potential vorticity conservation principle, valid for inertial
flows evolving on the beta plane, is assumed as the govern-
ing equation also in the special case of a statically stable,
two-layered unforced fluid. This kind of system, character-
ized by a rather simple vertical structure, is widely inves-
tigated in the literature and it is analyzed with full details
for instance in Pedlosky ([1], Sect. 6.16). Here we review
shortly the basic concepts. At the geostrophic level of ap-
proximation, the potential vorticity of the fluid columns
within each layer is the sum of three terms of compara-
ble magnitude: the relative vorticity of the geostrophic
current, the deformation of the fluctuating interface be-
tween the layers (which provokes stretching and squeezing
of the columns) and, finally, the contribution of the plane-
tary vorticity (which is a linear function of the latitude of
each column in the beta plane frame of reference). If we
denote with ψ1 and ψ2 the perturbation pressure (non-
dimensional quantities are hereafter understood) in the
upper and lower layer respectively, the associated currents
are u1 = k̂×∇ψ1 and u2 = k̂×∇ψ2 where k̂ is the unit
vector normal to the beta plane and ∇ is the planar gra-
dient operator ∇ = (∂/∂x, ∂/∂y). Hence the first contri-
butions to the potential vorticity, i.e. the relative vorticity
in the upper and lower layer, are ζ1 = k̂ ·∇×u1 =∇2ψ1

and ζ2 = k̂ ·∇ × u2 = ∇2ψ2, respectively. The mecha-
nism of stretching and squeezing of the fluid columns is
described by the terms −F1(ψ1 − ψ2) and −F2(ψ2 − ψ1),
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which form the second contribution to potential vorticity.
The parameters Fi = f2

0L
2(gDi∆ρ/ρ)−1 (i = 1, 2) play

the role of coupling constants between the layers and de-
pend on the Coriolis parameter f0, the horizontal scale of
the motion L, the relative density difference between the
layers ∆ρ/ρ and the typical thickness of each layer Di.
Usually, the factor

Ri =
1
f0

(
g
∆ρ

ρ
Di

) 1
2

,

appearing in the definition of Fi, is called the Rossby de-
formation radius of the layer “i”. The contribution of plan-
etary vorticity to potential vorticity is given by the term
βy, where β is the (non-dimensional) planetary vorticity
gradient while y is the poleward Cartesian coordinate of
the beta plane. On the whole, the potential vorticity Pi of
each layer turns out to be

P1 =∇2ψ1 − F1(ψ1 − ψ2) + βy

P2 =∇2ψ2 − F2(ψ2 − ψ1) + βy

and the conservation equations in local form are

∂Pi
∂t

+ J(ψi, Pi) = 0 (i = 1, 2).

In the last equation we have expressed the advective terms
ui ·∇ by using the known relations ui = k̂×∇ψ1 and the
Jacobian determinant

J(ψi, Pi) =
∂ψi
∂x

∂Pi
∂y
− ∂ψi

∂y

∂Pi
∂x
·
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Finally, by resorting to the explicit form of Pi and the
identity J(a, a) = 0, we have

∂

∂t
(∇2ψ1 − F1(ψ1 − ψ2))+J(ψ1,∇2ψ1 + F1ψ2 + βy)=0

∂

∂t
(∇2ψ2 − F2(ψ2 − ψ1))+J(ψ2,∇2ψ2 + F2ψ1 + βy)=0.

Can the lower layer represent a quiescent abyss? This
situation would correspond to the choice ψ2 = 0 every-
where, but, in such a case we would obtain, from the
equation of the lower layer, F2∂ψ1/∂t = 0. If we do not
wish to constrain the upper layer to steadyness, the only
possibility is F2 = 0. Actually, equation F2 = 0 means
f2

0L
2(gD2∆ρ/ρ)−1 = 0 and it can be satisfied only asymp-

totically for a very large value of the lower layer thickness
D2. The corresponding large value of the Rossby deforma-
tion radius R2 means that the interface plays the role of a
rigid lid for the lower layer. In the limit of infinite depth,
the evolution of the fluid in the upper layer is given by the
simplified equation ∂(∇2ψ1 − F1ψ1)/∂t + J(ψ1,∇2ψ1 +
βy) = 0, which hereafter we write without the subscript 1:

∂

∂t
(∇2ψ − Fψ) + J(ψ,∇2ψ + βy) = 0. (1.1)

Equation (1.1) governs the so-called 11/2-layer model of
inertial circulation, which is an intermediate case between
the two-layer model and the fully barotropic model. The
“infinite” thickness of the lower layer decouples the motion
of the lighter fluid from that of the heavier, in spite of
the presence of a fluctuating interface that separates the
two fluids. Indeed, the interface plays a remarkable role
also from the stability point of view, in the sense that it
can introduce a stabilizing effect (far from being obvious)
on the perturbed mean motion of the upper layer, as we
will see in Section 3. Basically, we will take into account
a square fluid domain, D, along which the no mass flux
boundary condition is imposed

ψ = 0 ∀(x, y) ∈ D ∀t ≥ 0. (1.2)

Conventionally, the stability of the perturbed solution will
be explored from t = 0 onwards. To this purpose, we define
the basic state ψ0 as the solution of the time independent
problem constituted by the equation

J(ψ0,∇2ψ0 + βy) = 0 (1.3)

with the boundary condition

ψ0 = 0 ∀(x, y) ∈ D, (1.4)

which is the steady-state version of problem (1.1, 1.2). We
introduce the potential vorticity Q of the basic state

Q ≡∇2ψ0 − Fψ0 + βy (1.5)

and recall that (1.3) is satisfied if a functional relationships
of the kind

ψ0(x, y) = Ψ0(Q(x, y)) (1.6)

holds and Ψ0 is a differentiable function of its argu-
ment. Each specific form of relationship (1.6) consistent
with (1.4) singles out a basic state. Our main aim is to an-
alyze, in terms of the functional dependence (1.6), how the
non-linear stability of ψ0 is affected by the term −F∂ψ/∂t
that involves the available potential energy of the distur-
bances superimposed to ψ0 itself.

1.2 The mathematical method

We express every solution ψ of the time dependent prob-
lem (1.1, 1.2) as the superposition of a steady solution ψ0

of the class (1.6) with a suitable time dependent distur-
bance φ

ψ = ψ0 + φ.

We briefly recall the concept of (nonlinear) stability. Once
we have fixed a norm N [φ] and denoted by φi the distur-
bance evaluated in t = 0, we say that ψ0 is stable in the
norm N if

∀ε > 0 ∃δ(ε) > 0: N [φi] < δ ⇒ N [φ(t)] < ε ∀t ≥ 0.
(1.7)

In plain words, the basic state ψ0 is stable if the per-
turbed state ψ remains arbitrarily close to ψ0 at ev-
ery time provided that it is sufficiently close to ψ0 at
the initial time. Note, in particular, that (1.7) is veri-
fied if N [φ(t)] ≤ N [φi]: in this case it is sufficient to take
δ(ε) = ε. (Hereafter, square brackets will be used mainly
to denote functionals, i.e., rules that associate numbers to
functions.)

The method of Arnol’d’s invariant [2–4] is a powerful
tool to investigate the non-linear stability of planar, steady
flows in inviscid fluids. It is based on a theorem about
the finite-amplitude conservation of a functional, the in-
variant, that can be bounded from above and from below
by linear combinations of squares of suitable perturbation
norms n2

k[φ] with k = 0, 1, 2... In the lower bound, these
norms are evaluated at a generic time t after the “initial”
time t = 0, while, in the upper bound, the same norms
refer just to t = 0. Then, if these linear combinations con-
stitute the square of a norm, this norm “sandwiches” the
invariant in t and in t = 0; thus, the standard definition
of stability is satisfied.

Formally, the situation is the following. Let A[ψ0, φ]
be the invariant (whose structure will be described in next
section) and express its conservation through the equation

A[ψ0, φ(t)] = A[ψ0, φi]. (1.8)

If we can write∑
k

ckn
2
k[φ(t)] ≤ A[ψ0, φ(t)]

= A[ψ0, φi] ≤
∑
k

c̃kn
2
k[φi], (1.9)
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where the summation will be specified in equation (3.7)
and

0 ≤ c̃k ≤ ck ∀k, (1.10)

then the nonlinear stability of ψ0 in the norms

N [φ] ≡
{∑

k

ckn
2
k[φ]

} 1
2

and Ñ [φ] ≡
{∑

k

c̃kn
2
k[φ]

} 1
2

(1.11)

follows immediately. In fact, according to (1.9),

N [φ(t)] ≤ Ñ [φi] (1.12)

while, from (1.10), we have

Ñ [φ(t)] ≤ N [φ(t)] ∀t ≥ 0 (1.13)

so (1.12, 1.13) imply both N [φ(t)] ≤ N [φi] and Ñ [φ(t)] ≤
Ñ [φi], in accordance with (1.7). Things are not so imme-
diate if (1.10) does not hold. In fact, if a given coefficient
of the linear combinations is negative, then the functional
N [φ] is not convex, so it is not a norm nor can be used to
analyze the stability of ψ0. This situation happens when-
ever (1.6) yields a constraint on its derivative of the kind

−C ≤ dΨ0

dQ
≤ −c, (1.14)

where C and c are two positive constants that depend on
the form of (1.6) itself.

In this paper the method of Arnol’d’s invariant to the
steady solution ψ0 of equation (1.1), under the assumption
of the double constraint (1.14) is applied. The main result
is a satisfactory definition of a perturbation norm suitable
to prove the conditional stability of the system. Somewhat
surprisingly, this approach is also able to explain why the
interface has a stabilizing effect on the motion.

We take into account a rectangular fluid domain D
included into the non-dimensional beta plane defined by

D ≡ [x′ ≤ x ≤ x′ +∆x]× [y′ ≤ y ≤ y′ +∆y] (1.15)

and impose the no mass flux boundary condition (1.2)
or (1.4) to the flow fields.

Finally, it is useful to recall two basic inequalities in-
volving the integrated enstrophy as well as the kinetic
and potential energy of the flow. They are (details can
be found, for instance, in [5]):

B

∫
D

ψ2dxdy ≤
∫

D

|∇ψ|2 dxdy (1.16)

and

B

∫
D

|∇ψ|2 dxdy ≤
∫

D

(∇2ψ)2dxdy. (1.17)

The constant B appearing in (1.16, 1.17) depends, in gen-
eral, on the shape and size of the fluid domain. For the
domain (1.15) we have

B =
( π

∆x

)2

+
(
π

∆y

)2

· (1.18)

2 Construction of Arnol’d’s invariant

A short summary of the construction of Arnol’d’s invari-
ant, as reported in [4] but taking into account also the
term −F∂ψ/∂t of the governing equation (1.1) is outlined.
The method is mainly based on the matching of two ex-
pressions of the kind

dE[φ]
dt

= θ[ψ0, φ] (2.1)

and

dI[ψ0, φ]
dt

= −θ[ψ0, φ] (2.2)

that directly lead to the conservation statement

dA[ψ0, φ]
dt

= 0 (2.3)

where E, θ, I are functionals (to be determined) of their
arguments, and A[ψ0, φ] = E[φ] + I[ψ0, φ] is just the in-
variant considered in the introduction.

Consider first (2.1) in which E[φ] means the integrated
mechanical energy of the disturbance. Substitution of ψ =
ψ0 + φ into (1.1), recalling also (1.5), gives the equation

∂

∂t
(∇2φ− Fφ) + J(ψ0,∇2φ)

+ J(φ,Q+ Fψ0 +∇2φ) = 0. (2.4)

The boundary condition of φ easily comes from (1.2, 1.4):

φ = 0 ∀(x, y) ∈ ∂D. (2.5)

Multiplication of (2.4) by φ and the subsequent integration
on D with the aid of (2.5) yields

1
2

d
dt

∫
D

(
|∇φ|2 + Fφ2

)
dxdy =

∫
D

∇2φJ(φ, ψ0)dxdy.

(2.6)

Equation (2.6) has the same form as (2.1) if we designate
E[φ] and θ[ψ0, φ] through

E[φ] ≡ 1
2

∫
D

(
|∇φ|2 + Fφ2

)
dxdy, (2.7)

θ[ψ0, φ] ≡
∫

D

∇2φJ(φ, ψ0)dxdy.

Consider now (2.2). Define the integral

H(Q, q) =
∫ q

0

[Ψ0(Q+ ξ)− Ψ0(Q)]dξ (2.8)

where, for the moment, q = q(x, y, t) is left unspecified.
From (2.8) we evaluate the time derivative to obtain

dH
dt

=
∂H

∂Q

dQ
dt

+
∂H

∂q

dq
dt

=
[
Ψ0(Q+ q)− Ψ0(Q)− q ∂ψ0

∂Q

]
dQ
dt

+ [Ψ0(Q+ q)− Ψ0(Q)]
dq
dt
· (2.9)



396 The European Physical Journal D

Now, if P = ∇2ψ − Fψ + βy is the potential vorticity of
the perturbed state and we set

q ≡∇2φ− Fφ, (2.10)

then, recalling (1.5), we have P = Q + q and, because
of (1.1), dQ/dt = −dq/dt. Moreover,

dQ
dt

=
∂Q

∂t
+ J(ψ0 + φ,Q) = J(φ,Q)

where the steadiness of Q has been used in the last step.
Therefore, (2.9) becomes

dH
dt

= −q ∂ψ0

∂Q
J(φ,Q) = −(∇2φ− Fφ)J(φ, ψ0). (2.11)

Finally, integration of (2.11) on D with the aid of (2.5)
yields, recalling also (2.8),

d
dt

∫
D

{∫ q

0

[Ψ0(Q+ ξ)− Ψ0(Q)]dξ
}

dxdy =

−
∫

D

∇2φJ(φ, Ψ0)dxdy. (2.12)

Comparison of (2.12) with (2.2) shows that

I[ψ0, φ] ≡
∫

D

{∫ q

0

[Ψ0(Q+ ξ)− Ψ0(Q)]dξ
}

dxdy. (2.13)

On the whole, from (2.1, 2.2, 2.3, 2.7, 2.13), Arnol’d’s
invariant turns out to be

A[ψ0, φ] =
∫

D

{
1
2

(
|∇φ|2 + Fφ2

)
+
∫ q

0

(Ψ0(Q+ ξ)− Ψ0(Q)]dξ
}

dxdy. (2.14)

3 Determination of the norm associated
to Arnol’d’s invariant and the effect
of a moving interface on stability

In order to take into account explicitly the double inequal-
ity (1.14), it is useful to apply Lagrange theorem to the
last integrand of (2.14)

Ψ0(Q+ ξ)− Ψ0(Q) =
(

dΨ0

dQ

)
Q=Q̄

ξ, (3.1)

where Q̄ is a suitable value of the potential vorticity of
the basic state. Applying (1.14) to (3.1), we have

c

2
q2 ≤ −

∫ q

0

[Ψ0(Q+ ξ)− Ψ0(Q)] dξ ≤ C

2
q2 (3.2)

and, on the whole, we can write∫
D

{
cq2(t)− |∇φ(t)|2 − Fφ2(t)

}
dxdy ≤ −2A[ψ0, φ(t)]

= −2A[ψ0, φi] ≤
∫

D

{Cq2
i − |∇φi|2 − Fφ2

i }dxdy

≤
∫

D

Cq2
i dxdy (3.3)

(the factor −2 is insignificant since we can redefine the
invariant A→ −2A).

At this point it is useful to define the norms:

n1[φ] ≡
{∫

D

q2dxdy
} 1

2

(3.4)

and

n0[φ] ≡
{∫

D

(
|∇φ|2 + Fφ2

)
dxdy

} 1
2

(3.5)

so that (3.3) can be rewritten as

cn2
1[φ(t)]− n2

0[φ(t)] ≤ −2A[ψ0, φ(t)]

= −2A[ψ0, φi] ≤ Cn2
1[φi]. (3.6)

With reference to (1.9) we identify

c0 = −1, c1 = c, c̃0 = 0, c̃1 = C, c̃k = ck = 0
∀k > 1 (3.7)

where c and C are the constants appearing in (1.14).
In the introduction, we have anticipated that for

proper values of c we have cn2
1[φ(t)] − n2

0[φ(t)] > 0 ∀φ,
in general, however one of the defining axioms of a norm,
namely the triangular inequality, does not hold. In spite
of this, a possible way out is outlined in what follows.

If an inequality of the kind

n2
0[φ] ≤ λn2

1[φ] (3.8)

does exist, and

0 < λ < c (3.9)

then (3.6) implies the inequalities:

n2
1[φ(t)] ≤ 1

c− λCn
2
1[φi] (3.10)

and

n2
0[φ(t)] ≤ λ

c− λCn
2
1[φi]. (3.11)

Addition of (3.11) with (3.10) multiplied by λ can be
bounded from above according to the inequality

n2
0[φ(t)] + λn2

1[φ(t)] ≤ 2C
c− λ

{
n2

0[φi] + λn2
1[φi]

}
· (3.12)

If we define the norm

n[φ] ≡ {n2
0[φ] + λn2

1[φ]} 1
2 , (3.13)

then inequality (3.12) implies the stability of the basic
state ψ0 in the norm (3.13); in fact we have

n[φ(t)] ≤
{

2C
c− λ

} 1
2

n[φi]. (3.14)
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Inequality (3.14) is especially useful if we are able to find
the least upper bound of the quantity λ appearing in (3.8).
Recalling (2.10, 3.5, 3.6, 3.8), the problem involving λ
takes the form

R[φ] ≡

∫
D

(
|∇φ|2 + Fφ2

)
dxdy∫

D
[(∇2φ)2 + 2F |∇φ|2 + F 2φ2] dxdy

≤ λ.

(3.15)

To develop (3.15) we take a K such that 0 ≤ K ≤ 1 and
bound from below the integral∫

D

(∇2φ)2dxdy ≡ K
∫

D

(∇2φ)2dxdy

+ (1−K)
∫

D

(∇2φ)2dxdy

in terms of
∫

D
|∇φ|2dxdy and

∫
D
φ2dxdy by resorting to

(1.16) and (1.17). We obtain∫
D

(∇2φ)2dxdy ≥ KB
∫

D

|∇φ|2dxdy

+ (1−K)B2

∫
D

φ2dxdy. (3.16)

Further, using (3.16) in (3.15), we get

R[φ] ≤ ∫
D

(
|∇φ|2+Fφ2

)
dxdy

(KB+2F )
∫

D
|∇φ|2dxdy+[(1−K)B2+F 2]

∫
D
φ2dxdy

·

(3.17)

If

(1−K)B2 + F 2 = F (KB + 2F ), (3.18)

then (3.17) immediately yields

R[φ] ≤ 1
KB + 2F

(3.19)

and an upper bound of R[φ] is found. Equation (3.18)
gives

K =
B − F
B

· (3.20)

Solution (3.20) is constrained by the double inequality

0 ≤ B − F
B

≤ 1

that indeed demands only B ≥ F . This last inequality
is easily met, for instance, by choosing ∆x = ∆y = 1
in (1.15) and F = 1 in (1.1), in accordance with the
non-dimensionality of the problem under investigation.
In this case B ≥ F means (see Eq. (1.18)) 2π2 ≥ 1,
which is trivially true. Substitution of (3.20) into (3.19)

yields R[φ] ≤ 1/(B + F ) and, according to (3.9), the con-
ditional stability of ψ0 in the norm (3.13) is ensured if
c > 1/(B + F ), that is to say, with reference to (1.14), if

−C ≤ dψ0

dQ
≤ −c < − 1

B + F
· (3.21)

Inequality (3.21) represents our basic result. The remark-
able difference with respect to the barotropic case (F = 0)
is the presence of a fluctuating interface (F > 0) between
the moving layer and the quiescent abyss that stabilizes
the flow, in the sense that it enlarges towards zero the
interval of values of c corresponding to stable solutions.
Our result is consistent with that of [6], which was ob-
tained within a rather different context.

Finally, we prove that

λ =
1

B + F
(3.22)

is the best estimate of the upper bound (3.15). In fact, if
λ∗ > 1/(B+F ) were the best estimate, then the equation

n2
0[φ̃] =

(
1

B + F
+ a

)
n2

1[φ̃] (3.23)

would be satisfied by some φ̃, where 1/(B + F ) + a < λ∗
and a > 0. Equation (3.23) is equivalent to

(B + F )n2
0[φ̃] = (1 + a(B + F ))n2

1[φ̃] (3.24)

but we show that if a > 0, the lhs of (3.24) is necessarily
lesser than the rhs of the same equation. In fact, the lhs
is bounded from above according to the inequality

(B + F )n2
0[φ] < (1 + a(B + F ))(B + F )n2

0[φ]. (3.25)

On the other hand, we know from equations (3.8, 3.22)
that n2

1[φ] ≥ (B+F )n2
0[φ], so the rhs of (3.24) is bounded

from below as follows:

(1 + a(B + F ))n2
1[φ̃] ≥ (1 + a(B + F ))(B + F )n2

0[φ̃].
(3.26)

Since equations (3.25, 3.26) are not consistent with (3.24)
for a > 0, we conclude that (3.22) is the best estimate.

4 Uniqueness of the stable basic state

In this section we show that, if c > 1/(B+F ) and Q(ψ0) is
single-valued, then ψ0 is the unique solution of the steady
problem that defines it. We recall that the problem for
ψ0 is

∇2ψ0 − Fψ0 + βy = Q(ψ0) (4.1)
ψ0 = 0 ∀(x, y) ∈ ∂D. (4.2)

Should we assume that problem (4.1, 4.2) has two solu-
tions, say for example ψI

0 and ψ II
0, if we set δ ≡ ψI

0−ψ II
0 and

subtract from (4.1) evaluated for ψI
0 the same equation
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evaluated for ψ II
0, we obtain ∇2δ − Fδ = Q(ψI

0)−Q(ψ II
0).

Hence, by resorting to the Lagrange theorem, we have

∇2δ − Fδ =
[

dQ
dψ0

]
ψ0=ψ̄0

δ. (4.3)

Multiplication of (4.3) by δ and the subsequent integration
on D with the aid of (4.2), which implies δ = 0 ∀(x, y) ∈
∂D, yields

−
∫

D

|∇δ|2dxdy =
∫

D

{
F +

[
dQ
dψ0

]
ψ0=ψ̄0

}
δ2dxdy.

(4.4)

As Q(ψ0) is single-valued, inequality (1.14) implies
−1/c ≤ dQ/dψ0 ≤ −1/C; therefore, using also (1.16),
the rhs of (4.4) can be estimated as follows

(
F − 1

c

)∫
D

δ2dxdy ≤
∫

D

{
F +

[
dQ
dψ0

]
ψ0=ψ̄0

}
δ2dxdy

≤ −B
∫

D

δ2dxdy

and hence (
B + F − 1

c

)∫
D

δ2dxdy ≤ 0. (4.5)

As c > 1/(B+F ), inequality (4.5) can be satisfied only if
δ = 0, which implies ψI

0 = ψ II
0, i.e. the uniqueness of ψ0.

5 Comparison between linear and non-linear
stability of a channeled flow

It is interesting to compare the results of the stability
analysis of a given basic flow both from the nonlinear and
the linear points of view. To this purpose, we analyze the
stability of a steady zonal flow of the kind

ψ0 = ψ0(y) (5.1)

in the unbounded domain

D =]−∞ < x < +∞[×[y′ ≤ y ≤ y′ +∆y], (5.2)

under the no mass flux boundary condition

ψ0(y′) = ψ0(y′ +∆y) = 0. (5.3)

We stress that criterion (3.21) can be easily modified
within the non-linear framework under the hypothe-
ses (5.1, 5.2), as follows. First of all, the potential vorticity
of the basic state is

Q =
d2ψ0

dy2
− Fψ0 + βy. (5.4)

Moreover, to ensure convergent integrals, we restrict the
admissible perturbations to those periodic in longitude;

that is, we assume φ(x, y) = φ(x + Λ, y) and evaluate
the norm squares appearing in Sections 2 and 3, i.e.∫

D φ
2dxdy,

∫
D |∇φ|2dxdy and

∫
D(∇2φ)2dxdy in D ≡ DΛ,

where

DΛ = [x′ ≤ x ≤ x′ + Λ]× [y′ ≤ y ≤ y′ +∆y].

Generally, φ(x′, y) and φ(x′+Λ, y) are not zero, so the con-
stant B appearing in (1.13, 1.14) is different from (1.15),
and in the present section it takes the value

B =
(
π

∆y

)2

· (5.5)

On the whole, the form of criterion (3.21) still holds, but
with equations (5.4, 5.5) instead of equations (1.5, 1.18)
respectively.

In the linear framework, the term J(φ,∇2φ) is ne-
glected with respect to the other terms of (2.4), which
can be re-written as

∂

∂t
(∇2φ− Fφ) + u0

∂

∂x
∇2φ+

(
β − d2u0

dy2

)
∂φ

∂x
= 0

(5.6)

where we have introduced the zonal current u0 =
−dψ0/dy of the basic state (5.1). According to the stan-
dard theory, we put

φ = A(y)exp[ik(x− ct)] (5.7)

where the complex amplitude A(y) satisfies (5.3), i.e.

A(y′) = A(y′ +∆y) = 0 (5.8)

while c = Re(c) + i Im(c) is the along-channel complex
propagation velocity of the perturbation. Substitution of
(5.7) into (5.6) yields

d2A

dy2
− k2A+

(
cF + β − d2u0

dy2

)
(u0 − c)−1A = 0 (5.9)

Integration of (5.9) multiplied by A∗ with the aid of (5.8)
gives

−
∫ y′+∆y

y′

(∣∣∣∣dAdy
∣∣∣∣2 + k2|A|2

)
dy

+
∫ y′+∆y

y′

(
cF+β−d2u0

dy2

)
(u0−c)−1|A|2dy=0 (5.10)

and the vanishing of the imaginary part of (5.10) is ex-
pressed by the equation

Im(c)
∫ y′+∆y

y′

(
u0F + β − d2u0

dy2

) ∣∣∣∣ A

u0 − c

∣∣∣∣2 dy = 0.

(5.11)

From (5.11) we see that if u0F + β − d2u0/dy2 has a con-
stant sign ∀y in the interval ]y′, y′ +∆y[, then Im(c) = 0
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and the basic state ψ0 is linearly stable. If F = 0, this
statement is known as Kuo criterion ([7], reported, for in-
stance, in [8], Sect. 7-2). Unlike in [7], here we take F > 0.
If we define

m ≡ Min
[y′,y′+∆y]

(
u0F + β − d2u0

dy2

)
and

M ≡ Max
[y′,y′+∆y]

(
u0F + β − d2u0

dy2

)
,

we can trivially write

m ≤ u0F + β − d2u0

dy2
≤M. (5.12)

At this point, we resort to the fact that the stability prop-
erty of a zonal flow does not change under a Galilean trans-
form of the reference system, of the kind{

x→ x = ũt

y → y
(5.13)

where ũ is any constant velocity in the zonal direction.
With respect to the new frame (5.13), the zonal velocity
is u0 + ũ, while d2u0/dy2 is left unchanged by (5.13) and
equation (5.12) takes the form

m+ ũF ≤ u0F + ũF + β − d2u0

dy2
≤M + ũF. (5.14)

Due to the arbitrariness of ũ, we can fix ũ such that m+
ũF > 0 or M + ũF < 0, i.e.

ũ > −m
F

or ũ < −M
F
· (5.15)

If one of (5.15) holds, then u0F + ũF + β − d2u0/dy2

has a constant sign inside ]y′, y′ + ∆y[ because of (5.14).
Hence, the linear stability of ψ0 follows in the reference
frame (5.13) and hence in all the frames. In other words,
every basic state (5.1) satisfying (5.3) turns out to be lin-
early stable.

6 Conclusions

In the above section two different conclusions depending
on the non-linear or linear approach to the stability prob-
lem of the same basic state are discussed. Unconditional
linear stability would seem to bring about a more general
result, but it is strongly restricted by the linearity assump-
tion itself. In fact, for the linear analysis only short time
intervals dealing with small amplitude disturbances can
be taken into account, omitting consideration of slowly
growing perturbations, as is the case of resonant triads
of Rossby waves ([1], Sect. 3.26). According to assump-
tion (5.7), the linear analysis allows unstable states to

grow only exponentially, so a possible slowly growing per-
turbation is (incorrectly) explained as the behaviour of
a stable perturbed flow. On the contrary, the non-linear
approach is based on the conservation principle (1.5) and
therefore it renounces all hypotheses on the details of the
time evolution of the system, thus always yielding well-
grounded information.

Finally, we take the opportunity to point out the link
between the definition (1.7) of nonlinear stability and the
approach of the linear stability theory. The latter theory
uses (implicitly) the norm defined by

N [φ] =
∫

D

φφ∗dxdy,

so position (5.7) yields

N [φ(t)] =
∫

D

|A|2exp[−2kIm(c)t]dxdy (6.1)

and hence

N [φi] =
∫

D

|A|2dxdy. (6.2)

Now, as the system under investigation is inviscid, if
Re(c)+i Im(c) is an eigenvalue of (5.9), also Re(c)−i Im(c)
is an eigenvalue of the same equation. Therefore, the im-
plication∫

D

|A|2dxdy < δ(ε)⇒
∫

D

|A|2exp[−2kIm(c)t]dxdy < ε

∀t ≥ 0

coming from (1.7) with the use of equations (6.1, 6.2) is
not met for all Im(c), unless Im(c) = 0. In other words,
stability holds only if all the eigenvalues of (5.9) are real.
At this point, the nonlinear analysis should also have clar-
ified the rationale behind the procedure used after equa-
tion (5.11) to show the linear stability of the Kuo flow.

The author is deeply indebted to Dr. Fabio Cavallini (Istituto
Nazionale di Oceanografia e di Geofisica Sperimentale, Trieste)
and to Dr. Anna Csaki (University of Trieste) for a careful and
critical reading of the manuscript.
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